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Supporting Information Text15

Methods and materials16

Experimental design.17

Task paradigm. Twenty-four native Dutch subjects (13 female, 18-30 years of age, 21 right handed) performed a single word18

reading task which presented words, pseudo-words and false-font items as task conditions. Two subjects were ultimately19

excluded from analysis owing to computer failure and signal dropout, leaving 22 data sets for analysis. Data for one subject20

was unrecoverable following computer failure during image reconstruction. The second subject experienced signal dropout in21

the left occipitotemporal sulcus and so was excluded from all analysis. Subjects had normal or corrected to normal vision and22

were screened for reading impairment. Left handed participants were included because regions of interest were determined23

through functional localization. Language function was observed to be left lateralized in all participants. Informed consent for24

all experimental procedures was obtained in accordance with the procedures of ethical approval of the Donders Centre for25

Cognitive Neuroimaging and the Erwin L. Hahn Institute.26

Initially, the experiment was intended to use a 3 × 2 task design of Lexicality (words, pseudo-words, false-font items) × Length27

(short, long) with 120 items for each level, and where ‘short’ and ‘long’ designated the length of the words in terms of number28

of syllables. The length manipulation was intended to vary the bottom-up signal contribution to the LOTS. It was determined29

through piloting that the length manipulation was ineffective and was not analyzed as part of this study. The number of30

participants was chosen on the basis of previous work using similar acquisition techniques (1). Our task thus included three31

relevant conditions, two of which (words, pseudo-words) were conditions of interest for our analysis, and one of which (false-font32

items) was used to localize the functional Region Of Interest (fROI) for analysis. Figure S5 visualizes mini-blocks from each33

condition.34

Item creation. Word items were selected from a list of high frequency, concrete Dutch nouns taken from the Celex database35

(2). Words were selected to maximize frequency, minimize the standard deviation of word frequency, and minimize standard36

deviation of these values for short and long items.37

Pseudo-words were generated using Wuggy (3). Pseudo-word generation was constrained on the basis of phonemic38

neighborhood density, consonant/vowel structure and the number of characters of the word items. The word and pseudo-word39

stimuli, and the parameters used in Wuggy to generate the pseudo-word stimuli can be found in supplementary materials40

(StimulusList.xlsx).41

False-font items were created by rendering the word items in the false font. The false font (4) was designed to preserve the42

low level features of familiar orthographically legal characters, but to be visually different from letter shapes. These items are43

included in supplementary materials (FalseFontItems.pdf). Collapsing across the length manipulation, there were 240 items of44

each stimulus type. Sample items can be seen in the main text.45

Stimulus presentation. Items were presented during fMRI measurements taken over 12 runs. Runs were delimited by breaks in46

data acquisition. Twenty items of each stimulus type were presented per run, with 60 items presented in total per run.47

Individual stimuli were visually presented for 800ms in the center of the display. One item was presented per trial. Items48

were rendered in white on a black background, as shown in the main text.49

Presentation onset was jittered around the 3960 ms TR based on the design optimization calculations obtained using optseq50

(5). A black screen was presented for the remaining 3160 ms of each trial. Stimuli were presented minimally with a 200 ms51

delay from the trial onset and offset resulting in a minimum ISI of 400ms and a maximum ISI of 5920 ms. In practice, ISIs fell52

between these two extremes. A fixation cross was presented for a full trial (3960 ms) at the beginning of each run and following53

each mini-block.54

Stimuli were presented in 5 item mini-blocks in which all 5 items were of the same condition type. Each mini-block was55

followed by a fixation cross presented for the duration of one trial. On three pseudo-random occasions per run, a question mark56

was presented that instructed the participant to indicate via button-box whether the previous mini-block contained existing57

Dutch words. Button-box responses were not analyzed and were considered only to ensure participant compliance. Prior to the58

experiment, subjects were briefed on the type of items they were to see and instructed to silently read the items on the screen.59

The experiment was performed using Presentation ® software (Version 16.1, Neurobehavioral Systems, Inc., Berkeley, CA,60

www.neurobs.com). Two versions of the experiment were created with roughly half of the participants assigned to each version.61

The versions differed in block and item order. The different experiment versions were intended to capture latent, unintended62

effects inherent in presentation order or other version specific properties.63

Task design model. The task design matrix included condition regressors, temporal and spatial dispersion derivatives, physiologic64

regressors, motion regressors produced by using SPM version 12 (6), drift terms, frequency filters, outlier censors, and constant65

terms modeling the mean signal per run. Outlier time points were determined using 3dToutcount in AFNI (7). We considered66

a voxel to be an outlier if the probability of the distance of its intensity value from the trend exceeded p = 0.001 as defined by67

its location within a Gaussian probability distribution. Time points were excluded from analysis if 2% or more of the voxels at68

that time point were categorized as outliers.69

Stimulus onsets were modeled as instantaneous events with zero duration and convolved with the canonical hemodynamic70

response function. Condition regressors were created separately for word, pseudo-word and false-font items; and for the long71
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and short items within each condition. In total six condition types were modeled, but only three were analyzed after collapsing72

across length.73

Acquisition.74

Functional acquisition. Near whole brain, submillimeter (0.943, 0.900 slice direction) resolution T2*-weighted GE-BOLD data75

were acquired using a GRAPPA accelerated (acceleration factor 8 × 1) 3D-EPI acquisition protocol (8) with CAIPI shift kz =76

0, ky = 4 (9, 10); effective TE = 20ms, TR = 44ms, effective TR = 3960ms, BW = 1044Hz/Px, FoV = 215mm × 215mm ×77

215mm with 112 phase encode steps in the slice direction (100.8mm), α = 13°, partial Fourier factor=6/8 in both slice and78

phase-encoding directions. The first phase encoding gradient was applied in the posterior to anterior direction. An axial slab79

was collected in each subject and positioned to include the occipitotemporal sulcus. The 10cm slab was sufficient to allow80

complete brain coverage in several subjects and near complete coverage in the remaining subjects. Data were acquired on a81

Siemens Magnetom 7 Tesla scanner (Siemens Healthineers, Erlangen, Germany) with a 32-channel head coil (Nova Medical,82

Wilmington, USA) at The Erwin L. Hahn Institute in Essen, Germany. Functional data consisted per subject of 12 3D-EPI83

data sets of 77 volumes each, although some sessions were incomplete owing to time constraints or other difficulties. No session84

contained fewer than 10 functional data sets.85

Anatomy acquisition. Two anatomic images were acquired in each subject using the MP2RAGE (11) acquisition protocol (voxel86

resolution = 0.75mm × 0.75mm × 0.75mm, TR = 6000ms, TE = 3.06ms, T11 = 800ms, T12 = 2700ms, α1 = 4°, α2 = 5°,87

BW = 240Hz/Px, FoV = 240mm × 240mm with 192 slices (144mm)) and a T1-weighted inversion recovery EPI (IR-EPI)88

protocol based on the parameters used in the functional acquisition protocol. To create the T1 contrast, the following parameters89

were modified from the functional acquisition: α = 90°, T1 = 800ms, TR = 200ms, TE = 20ms. Example images from each90

type of anatomic acquisition can be seen in figure S1.91

It was necessary to increase the number of phase encode steps in the slice direction from 112 to 160 and to expand the FoV92

in the slice direction to ensure fully overlapping coverage with the functional data. The IR-EPI images were used for image93

registration as they are known to provide high tissue contrast while preserving the geometric distortions of the functional94

images (12). High accuracy, cross-modal registration is challenging, particularly with high resolution acquisitions known to95

exaggerate geometric distortions. Performing co-registration taking the IR-EPI as the source image mitigated the challenges96

caused by these distortions.97

Field maps were also acquired in some subjects for potential use in distortion correction, though these were not used. The98

IR-EPI provided sufficient contrast in the native functional space to facilitate high quality registration without the need for99

distortion correction.100

Choice of acquisition method for laminar resolution imaging. lfMRI relies on the same neurovascular coupling mechanisms exploited101

in standard BOLD imaging. In recent years there has been increased support for the concept that the neurovascular coupling102

occurs at a sufficiently fine scale to make lfMRI feasible (13). However, the requirement for submillimeter resolution has led to103

considerable discussion as to the best MR-contrast for interrogating the hemodynamic response.104

The standard gradient echo BOLD contrast is highly sensitive to functional activation, but is known to have a considerable105

contribution from vessels downstream from the site of activation. The less commonly used spin-echo BOLD sequence only106

acquires data from a subset of the contrast mechanisms that contribute to gradient echo BOLD, but is believed to have a107

superior intrinsic spatial localization at high static magnetic field strengths (14–16). In addition, contrasts based on cerebral108

blood flow and volume (CBF, CBV) should also be considered. It is technically far easier to test and compare these contrasts109

in animal models, and historically such experiments largely preceded human lfMRI (17–24). The conclusion drawn from these110

was that CBV was consistently found to have the superior characteristics in terms of spatial resolution, and gradient echo111

BOLD the poorest. Spin-echo BOLD and CBF are somewhere between these two extremes. This hierarchy may be explained112

in terms of the current view that blood volume changes occur in the arterioles and capillaries (19, 25–27), and hence CBV113

contrast should not be a downstream contrast as is BOLD.114

The first laminar fMRI studies in humans are comparatively recent (28–30), and utilized gradient echo BOLD contrast.115

Since then, the VASO technique for measuring CBV noninvasively (21) has been further developed for application for laminar116

fMRI at high static magnetic field strengths (31–33), and a number of spin echo (34–36) and combined spin-echo and gradient117

echo studies (37, 38) have been performed. Laminar CBF has to date not been published for human studies. Our rationale118

for selecting gradient echo BOLD for the current study was based primarily on its exclusive ability to acquire high spatial119

resolution data from large volumes within an acceptable acquisition time. The two main alternatives – CBV and spin-echo – are120

currently techniques that are restricted in their volume coverage and suffer from comparatively long acquisition times (33, 36).121

The whole-brain gPPI results we report suggest, however, that GE-BOLD may be capable of more refined spatial localization122

than previously believed. As discussed in the main text, the ability of the gPPI to account for the task effects likely enhanced123

our ability to localize signal variance unique to individual depth bins. Simulations from Markuerkiaga et al. (39) based on124

reported depth dependent responses in visual cortex to identified a depth dependent peak to tail response ratio of at least 5:1125

in all cortical depths at 7T, which would reduce the detectability of unique variance downstream from its source. The gPPI126

results suggest that this ratio may be conservative, or perhaps influenced by task properties. Our reading experiment presented127

stimuli at a high frequency relative to presentation rates discussed in Markuerkiaga et al. (39), which should have produced128

relatively higher frequency task signal. The vasculature attributed to downstream BOLD effects consists of post capillary129

vessels draining into larger vessels, whereby differences in the vessel length and flow velocity will act to reduce the coherence of130
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the signal leading the vasculature bed to act as a low-pass filter. High frequency task signal components would therefore be131

expected to undergo greater attenuation than lower frequency components, and would experience a larger depth dependent132

peak-to-tail response ratio. In light of our results, it seems clear that unique variance related to each bin was well localized,133

and that signal contamination was isolated to the main task effects where it could be removed during the gPPI analysis.134

Image registration. High quality registration is critical to laminar fMRI. Given the complications inherent in the registration of135

submillimeter data, different combinations of tools were necessary to achieve accurate registrations in different participants.136

The criteria for success were constant, however, across all participants and of an entirely anatomical basis. Alignment quality137

was determined by visual inspection of brain edges and the left occipitotemporal sulcus. The registration procedure is described138

in this section.139

Motion correction. Image realignment was performed using spm_realign from SPM 12 (6), with parameter values set to achieve140

the highest quality registration. During this step, a mean functional image was computed to be used as the base image in141

cross-modal registration.142

Skull removal. Skull removal was performed on functional and anatomic data prior to cross-modal image registration. Different143

skull removal procedures were used depending on image modality. The FreeSurfer (40) watershed function was applied to the144

IR-EPI data sets, sometimes following a first pass B1 bias field correction (discussed in B1 Correction). Nearly all processed145

brains required manual intervention to remove voxels containing unwanted skull or tissue, or to reintroduce voxels removed in146

error. Skull removal was performed on all MP2RAGE images in the same manner.147

Skull removal was performed on the mean functional images produced during realignment. In this procedure, we manually148

edited the result of AFNI’s 3dAutomask program. 3dAutomask is typically used to remove the skull in images with poor tissue149

contrast, such as with T2*-weighted images. Parameters for this program were optimized on a per subject basis, and all results150

were manually edited to ensure that only voxels containing skull were removed. We found these results to be adequate on151

the basis of visual inspection following manual intervention, where ‘adequate’ describes results which did not contain residual152

skull or exclude voxels containing brain-matter. 3dAutomask parameters were iteratively optimized until a result was obtained153

which reasonably limited the necessary manual intervention.154

B1 correction. B1 correction on the IR-EPI data was unsuccessful on 5 data sets using the standard tools available in the155

FreeSurfer suite, resulting in failed skull removal and inaccurate segmentations. We were able reduce B1 inhomogeneity by156

applying an additional B1 correction before applying FreeSurfer tools. Our approach was to calculate a first-pass transform157

for the mean functional and IR-EPI images (with the skull) and apply the transformation to the mean functional image. We158

then utilized the B1 bias captured in the mean functional image to correct the IR-EPI anatomic images. Following the initial159

coregistration, the mean functional image was smoothed and voxel-wise intensity scaled between 0.3v and 0.9v of its intensity160

value v to prevent extreme values from unduly influencing bias correction. The IR-EPI was then divided by the scaled image,161

and the result was taken as the corrected image. The corrected image could then be coregistered to the original mean functional162

image and used as the input dataset for the standard FreeSurfer processing pipeline. We observed a marked improvement in163

both the coregistration results and the results of the FreeSurfer segmentation and surface generation after performing this164

correction (figure S2). Computation time was drastically reduced as well, in some cases up to 15 hours.165

Coregistration. Within-subject coregistration was performed using the skull-removed mean functional image and the skull-166

removed IR-EPI image. Using this image set mitigated registration error owing to image distortion typically observed in167

EPI acquisitions. High quality coregistration was crucial to the laminar analysis featured in this experiment, as the accurate168

definition of tissue boundaries in functional space follows only from a highly accurate coregistration of the structural and169

functional images. Note also that the transformation computed in this step was applied to the structural image to avoid170

introducing interpolation errors.171

Several coregistration tools were used to calculate optimal image alignment. For a given subject, multiple transforms were172

calculated and visually inspected. The best alignment as determined by visual inspection was taken for further analysis.173

Volume coregistration was performed using FreeSurfer’s robust, outlier insensitive registration cost function as implemented in174

mri_robust_register. If the resulting transformation resulted in poor registration, we then used the NMI cost function175

implemented in mri_robust_register and finally the NMI cost function implemented in AFNI’s 3dAllineate. If necessary,176

manual improvements were applied to the best transformations generated by these tools. Registration quality was assessed by177

visual inspection of alignment along the left occipitotemporal sulcus and brain edges.178

In 11 subjects, failure to reconstruct surfaces from the IR-EPI image made it necessary to perform surface reconstruction179

on MP2RAGE data, and therefore to bring the MP2RAGE surfaces into register with the functional data.. Following the180

initial coregistration described above for the IR-EPI images, the IR-EPI images were generally in good alignment with the181

task data and could serve as the source image for this purpose. In this case, MP2RAGE surfaces were aligned to the IR-EPI182

volumes using FreeSurfer’s boundary based registration program. If the IR-EPI volume was not in good alignment with the183

functional data, an initial alignment between the MP2RAGE and functional data was first computed using the tools described184

in the previous paragraph before performing the boundary based registration. The boundary based registration procedure is185

described below in a dedicated section.186
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Normalization for group analysis. Functional data for each subject were mapped into MNI space for use in the whole-brain gPPI187

group analysis. The skull-removed MP2RAGE image was first brought into alignment with the skull-removed mean functional188

image. After inspecting the quality of the registration, the functionally aligned MP2RAGE images were aligned to the MNI128189

template available in standard FreeSurfer installations. This transformation was concatenated with that obtained from the190

inverted matrix from the initial coregistration and applied to the motion corrected functional data. The result of this spatial191

normalization was MNI mapped functional data for each subject.192

Tissue segmentation and surface generation. Tissue segmentation was performed in FreeSurfer using the skull-removed IR-EPI193

image. Failures to properly reconstruct subject surfaces were addressed by inserting control points, applying additional194

normalization as described in a previous section, or disabling the correction of defects in surface topology if they did not195

occur in experiment critical regions. The IR-EPI images commonly included artifacts in noncritical locations that would196

result in discontiguities in the surface and unsuccessful surface generation. As these defects did not often occur near LOTS,197

it was possible to generate accurate surfaces even after bypassing correction. If surface reconstruction failed following these198

interventions, the MP2RAGE dataset was used in place of the IR-EPI, and additional registration steps were applied (discussed199

below).200

Boundary based registration. Surfaces reconstructed from the IR-EPI image did not require additional alignment to the functional201

data beyond resampling the FreeSurfer generated surfaces from “conformed space” to functional space. “Conformed space,”202

native to FreeSurfer, is a 1mm isotropic 2563 grid in the RAS coordinate system.203

Surfaces reconstructed from MP2RAGE images underwent an additional registration step using bbregister, FreeSurfer’s204

boundary based registration (BBR) tool. The goal of this procedure was to produce surfaces in register with the functional data.205

As the IR-EPI and MP2RAGE data sets were generally well aligned from the coregistration procedure described previously,206

the main purpose of the BBR was to find a solution accommodating the distortions affecting surface placement along the fROI.207

Using a boundary based cost function, IR-EPI images that were unable to be used for surface generation were aligned with the208

boundaries generated from the MP2RAGE images. The inverse of this transformation was then applied to the surfaces to align209

the boundaries to the IR-EPI image. If the alignment generated by the boundary based registration procedure was found to210

be inaccurate, simple solutions to improve accuracy involved optimizing the registration for the fROI through a weighting211

mask, manual intervention, or improving the alignment of the two images prior to the boundary based registration. Failing a212

simple solution, we also computed a nonlinear boundary based registration (41). In this approach, the registration algorithm213

recursively divided and aligned surface segments to increase registration accuracy.214

The importance of highly accurate image alignment in laminar resolution imaging cannot be overstated. In the present215

work, registration inaccuracies in excess of 1mm had the potential to displace entire bins, leading to meaningless results. Great216

care was taken to ensure accurate registrations and alignment of the surfaces with the functional images. As in the other217

registration procedures, registration quality was assessed only through visual inspection of key anatomy.218

Equivolume contouring. The gray matter volume of each subject was partitioned into equivolume bins using the OpenFmri219

(https://github.com/TimVanMourik/OpenFmriAnalysis) implementation of the equivolume contouring approach described in Waehnert220

et al. (42). The equivolume method increases the likelihood that the histological profile of each bin is consistent throughout221

the given region.222

We partitioned the gray matter volumes into 3 bins: the smallest number of bins which allowed for the dissociation of the223

deep, middle and superficial contributions to the overall BOLD signal. For the purpose of the spatial GLM, it was necessary224

to include two additional non-cortical bins representing white matter and CSF volumes respectively. The inclusion of these225

additional bins was due to partial volume effects caused by voxels extending outside the cortical strip. Voxels observed within226

these boundaries were assigned a value representing the fractional volume observed within a particular set of boundaries.227

The ultimate output of this procedure was a 4D dataset whose first 3 dimensions represented spatial coordinates and whose228

4th dimension represented the different bins. Incrementing over the 4th dimension indices gave the fractional volume of each229

voxel found in that particular bin. This volume is referred to as the layer-volume distribution.230

In our partition scheme, the volume subsuming the six histological layers was partitioned into three bins. We argue that the231

histologically coarse bins were sufficient to dissociate top-down and bottom-up signal contributions. At the mesoarchitectural232

level of lfMRI, it is not practical to measure individual histological layers. One common approach to this challenge has233

been to consider a simplified model of layer interactions which merges supragranular (layers I,II,III), granular (layer IV) and234

infragranular (layers V,VI) histological layers into three logical layers based on shared connection tendencies (1, 28, 37, 43, 44).235

This model is based in large part on patterns of laminar connectivity discovered in Rockland & Pandya (45) when exploring the236

link between anatomy and functional hierarchy, and schematized in the Felleman and Van Essen hierarchy (46). The simplified237

laminar model has proven valuable when constrained by functional data, and has informed efforts in lfMRI.238

Physiologic noise removal. Cardiac and respiration data were collected concurrently with the functional data using a pulse239

oximeter and pneumatic belt. Physiologic regressor estimation up to the 6th (cardiac) and 8th (respiration) order was performed240

using a modified version of the PhysIO toolbox of the TAPAS suite (47). These minor modifications were necessary to account241

for unique log file formats produced by the equipment at the scan site. Regressors were then included in the design as nuisance242

regressors. Regressor quality was assessed with a partial F -test.243
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Non-laminar analysis. The task design was fitted using the generalized least squares regression implemented in the OpenFmri244

analysis suite. First level T -statistics were calculated in MATLAB version R2014B (The Mathworks Inc.) for condition and245

contrast effects in each subject individually. Several versions of the first level analysis were performed to calculate parameter246

fits in both native space and MNI space, and with different levels of spatial smoothing applied. This was necessary owing to247

requirements of the different analyses reported in this work.248

Native space data with were spatially smoothed with a 1mm and 4mm Gaussian kernel. Data smoothed with the 4mm249

kernel were mapped to MNI space and used in the whole-brain gPPI analysis. Data smoothed with the 1mm kernel were250

analyzed in the first level GLM used to identify the fROIs. Following fROI identification, the fROIs identified in each subject251

were resampled to native resolution and used as an inclusive mask of the original resolution, native space functional data. The252

voxels included in this mask then underwent depth-dependent signal extraction.253

Procedure to define functional region of interest. Anatomically, the region of interest was located proximal to the fundus of254

the occipitotemporal sulcus. It was functionally defined as a cluster of voxels which responded to visually presented words and255

pseudo-words, but preferentially to pseudo-words. In addition, this region is known to express reduced BOLD amplitude to256

false-font items compared to items composed of orthographically legal characters (48).257

The region was defined in each subject through a series of masking operations implemented with AFNI’s voxel-wise dataset258

calculator 3dcalc.These operations were performed on the t-statistics from the 1mm smoothed, native space analysis. First,259

voxels were removed if they did not reach threshold in both the word and pseudo-word conditions. This was defined as a260

t-statistic where 1 ≤ t ≤ 3. T was initially set to t = 2 and was increased or reduced if the number of surviving voxels fell261

outside of the desired range (see below). We then removed all voxels with a larger t-statistic for the false-font condition than262

for either the word or pseudo-word conditions. Finally, voxels were excluded if the difference between t-statistics of words263

and pseudo-words was larger than the original activation threshold. Clusters were considered for inclusion if they were 1)264

located within the extent of the occipitotemporal sulcus, if 2) cluster size was between 100 and 400 voxels, if 3) 30-50% of265

the voxels responded preferentially to the word condition over the pseudo-word condition, and if 4) the total response was266

comparable between the word and pseudo-word preferred voxels when considering the proportion of voxels preferring each267

condition. These criteria were selected to isolate a functional region which is known to respond preferentially to both words268

and pseudo-words compared to false-font items, prefer pseudo-words to words, and contain a mixture of individual voxels which269

prefer each condition. The fROI selection procedure was biased by design toward pseudo-word activation because stronger270

pseudo-word activation is a functional feature of the region (48).271

Further considerations were made with respect to the importance of cluster contiguity. Given the high spatial resolution of272

our data, it was possible to distinguish populations of active voxels spanning the CSF boundary bridging the occipitotemporal273

sulcus. Following the removal of the voxels located in CSF in some subjects, formerly contiguous clusters became distinguishable.274

We determined that the most reasonable approach was to include formerly contiguous voxels in the laminar analysis. Given that275

this region is often functionally defined and generally identified near the fundus of the occipitotemporal sulcus, partial volume276

effects have almost certainly influenced fMRI measurements at standard resolutions. The decision to exclude populations277

of voxels stranded on either side of the chasm would have proven arbitrary in that non-laminar studies investigating this278

region typically lack the resolution to distinguish fusiform and inferior temporal populations. We concluded that allowing for279

discontiguities in the left OTS fROI more faithfully adhered to the literature definition of the region than an ad hoc justification280

for voxel removal. Native space functional ROIs for all participants can be seen in figures S3 and S4.281

Depth dependent signal extraction. The fROI produced through the procedure described above was used to mask the layer-282

volume distribution. This resulted in a layer-volume distribution specific to the fROI. By treating this distribution as a design283

matrix such that rows were voxels and columns were bins, it was possible to regress it against the signal observed in the fROI284

for each time point in the experiment (49, 50).285

Fitting the voxel-volume distribution to each time point in the experiment yielded the relative contribution of each bin286

to the overall signal at each time point, thereby representing a depth dependent time-series for each depth bin. These were287

treated similarly to voxel time-courses and used to fit the task design.288

The task design model was then fitted to the extracted depth dependent time courses. Percent signal change was calculated289

as a division between β-weights assigned to each condition and the average weight assigned to the constant terms. The percent290

signal change values were then analyzed at the group level in an ANOVA and subsequent two-tailed, paired t-test comparing291

the responses to words and pseudo-words. T -statistics and ANOVA results were determined to be significant at p = 0.01.292

These analyses were implemented in MATLAB.293

Statistical analysis.294

Intraregional gPPI. The gPPI analysis is a generalized version of the PPI analysis. In the generalized form, the analysis is designed295

to span the full experiment space (51). In gPPI analysis, the first level model is extended by including the time-course of a296

seed region in addition to interaction terms of the seed region with each task condition regressor.297

As the goal of this analysis is to observe the effect of the interaction between the task and the neuronal response of a seed298

region, a deconvolution is typically applied to the seed time-course before computing the interaction term. Given the problems299

associated with deconvolution (52) and the novel nature of this work, we omitted deconvolution from our gPPI analysis. The300

depth dependent hemodynamic response function (HRF) is not well understood. In the absence of this knowledge, the task301
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regressors used in this experiment were created using the canonical HRF. Deconvolution based on the canonical HRF would302

have therefore exacerbated errors in modeling introduced by the initial convolution. Furthermore, the design of this study303

sequentially presented five items of each condition type, essentially in 20 second blocks. O’Reilly et al. (52) have shown that304

omitting deconvolution is not expected to greatly affect the outcome in block designs such as that used in the present study. We305

therefore considered it more prudent to omit rather than include deconvolution in this analysis. There is no known precedent306

for laminar specific gPPI. The gPPI design was created by adding seed region time-courses and interaction terms to the original307

design. Interaction terms were calculated as the product of the detrended depth dependent time-series and binary condition308

vectors (1 when a condition response was expected, 0 when it was not) derived from the task regressors. A time point was309

included in the interaction term if the task regressor diverged from 0 by 0.0001.310

Different models were created for each inter-regional analysis to assess the interaction between two depth- bins while311

alternating seed/target assignment. We did not model the third remaining bin. Six models were created in total, each containing312

six interaction terms (each of the six conditions multiplied by the seed-region time-course), the seed-region itself, and the313

full design as discussed previously. Group effects were assessed using AFNI’s 3dANOVA3. Paired two-tailed t-statistics were314

computed on the word and pseudo-word condition contrast. Results were deemed significant at p = 0.01.315

Bin to whole brain gPPI. In a separate gPPI analysis, we modeled the task-dependent effect of the deep and middle bins on the316

whole brain. The superficial bin was excluded from the whole brain gPPI for several reasons. The LOTS is hypothesized to317

connect to left temporal cortex through either primarily bottom-up or top-down configurations (48). To distinguish among these318

and thus explore the ability of lfMRI to distinguish between top-down from bottom-up network arrangements, it was necessary319

only to include the predicted top-down and bottom-up bins associated with word reading. Voxels within the superficial bin are320

also susceptible to partial volume artifacts due to vessels on the pial surface, which could possibly affect the analysis. The321

inclusion of the superficial bin would have required the gPPI model to include ten additional regression terms which would322

have been collinear with the experimentally interesting deep and middle bin terms, and so this was not considered further in323

the interests of a parsimonious data analysis.324

The analysis was performed on the MNI normalized data with a 4mm Gaussian smoothing kernel applied. Alignment quality325

was assessed partially on the basis of alignment accuracy of the middle temporal gyrus. Individual subject t-statistic maps were326

used in conjunction with subject anatomy and the MNI template used for normalization to determine the alignment quality of327

task critical regions. Inaccuracies in subject registrations were addressed with a manually created, secondary transformation328

containing small translations intended to improve task critical region alignment without introducing large global inaccuracies.329

As the experimental question related to the depth dependent connectivity to regions that respond to the word/pseudo-word330

contrast, the use of the non-laminar first level maps to facilitate alignment was independent of the gPPI analysis. Group results331

were assessed using AFNI’s 3dANOVA3, as in the previous section.332

The parameters of the spatial AutoCorrelation Function (ACF) representing the smoothness of the data were computed333

using AFNI’s 3dFWHMx on the residual time-series of first level analysis. The ACF parameters were used by the AFNI334

program 3dClustSim to compute the likelihood of random clusters given the ACF parameters 0.5815, 2.9134 and 8.3001, in a335

volume of the dimensions 63 × 82 × 55 with 2mm isotropic voxels. The dimensions of the volume used for permutation testing336

were determined with a group level functional data mask. Clusters were deemed significant at puncorr = 0.001, α = 0.05.337

The task-independent connectivity from the deep and middle bins was assessed using the deep and middle bin time-courses338

included in the gPPI model. The final results were visualized using the rendering plugin in AFNI. In addition to subjects339

2 and 19, subject 4 was excluded from this analysis. We were unable to successfully bring subject 4 into MNI space. Large340

inaccuracies in the registration resulted in the exclusion of this subject from the whole brain analysis. This subject was included341

in all analyses performed in native space.342
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Fig. S1. Different anatomy acquisitions used in this experiment. MP2RAGE (top), IR-EPI (bottom). The left hemisphere is shown on the right side of the images.
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Fig. S2. Comparison of FreeSurfer white matter surface generation on the left hemisphere before and after supplemental B1 correction. (A) uncorrected; (B) corrected; (C)
surfaces generated from A; (D) surfaces generated from B. The left hemisphere is shown on the right side of the image.
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Fig. S3. Native space fROIs 1-12

∗Subject 03 excluded from whole-brain gPPI analysis
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Fig. S4. Native pace fROIs 13-22
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Fig. S5. Sample stimuli showing mini-blocks from each condition. Stimuli were presented in 5 trial mini-blocks with the items from the same condition presented in the trials
within a block. The duration of each trial was 3960 ms. Each item was presented for 800 ms within the 3960 ms according to parameters obtained using optseq2. A black
screen was presented for the remaining 3160 ms in each trial. A fixation was presented for the duration of one trial (3960 ms) at the beginning of each run and following each
mini-block. From left to right: false fonts, words, pseudo-words. One syllable items are shown in the top portion and three syllable items are shown on the bottom.
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Additional data table S1 (StimulusList.xlsx)343

word and pseudo-word items344

Additional data table S2 (FalseFontItems.pdf)345

false-font items346
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